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Abstract. A problem arises in electronic structure calculations involving some generalised 
self-consistency condition. Examples are the self-consistency of the potential or the magnetic 
moment, the latter being discussed here in detail. The problem reduces to ensuring that 
when one requires analytic consistency between different quantities the numerical method 
used must preserve the analytic relation to arbitrary precision. Specifically we deal with the 
recursion method coupled with Gaussian quadrature for the calculation of the integrated 
density of states and show that the conventional prescription for the evaluation of the total 
energy fails to satisfy the analyticcondition that its minimumcorrespond to the self-consistent 
solution. We illustrate the magnitude of the effect and a way to overcome it using examples 
from a model density of states and a real calculation. 

1. Introduction 

In almost all electronic structure calculations the crucial quantity which we want to 
calculate is the total ground state energy subject to a generalised self-consistency 
condition. For example this can involve the potential seen by an electron, the Hellmann- 
Feynman force on a displaced atom or, in our case, the local magnetic moment in the 
calculation of the ferromagnetic ground state of iron. A particular problem arises in 
electronic structure calculations which use the recursion method (Haydock 1980) 
coupled with Gaussian quadrature (Nex 1978) for the analysis of the resulting continued 
fraction, but analogous difficulties exist in other contexts. In this short communication 
we will illustrate how a commonly used computational prescription for the calculation 
of the total energy fails to satisfy the analytic condition that its minimum correspond to 
the self-consistent solution and how this problem can be cured. We compare the new 
prescription with the standard method for absolute accuracy and then use it briefly in 
the context of longitudinal fluctuations in ferromagnetic iron to show the extent to which 
this problem can affect a calculation. 

This work re-emphasises the following general consideration. If one requires an 
analytic relationship between quantities calculated in different ways, e.g., total energies 
and forces, then it is crucial that this analyticity be preserved in the numerical formulation 
to arbitrary precision. What is important is the correlation of errors, not their absolute 
magnitude. 
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The object of the calculations is to obtain the total energy of the system subject to 
some given constraints as a function of a specified input parameter. This could be the 
displacement of an atom or the exchange splitting A between the up and down spin 
electrons in the calculation of the magnetic moment per atom. We will examine the 
latter case in detail below but first want to discuss the more general aspects of the 
problem. It is known from analytic theory that the self-consistency condition yields a 
minimum, U,,,, of the total energy U.  However it can easily happen, for a variety of 
reasons, that computationally the minimum U,,, does not correspond to the energy U,, 
when the self-consistency condition is satisfied. This is unsatisfactory because it raises 
the issue of which energy to take and can lead to other inconsistencies. Whereas this 
may not be a problem if one just wants a single energy, it becomes disastrous when small 
energy differences, such as those in our study of longitudinal fluctuations, are sought. 

Incidentally, one normally does want to use the self-consistency condition to find the 
minimum rather than obtaining it directly from a minimisation of the total energy since 
the former contains far more information. Suppose we are modelling some physical 
effect by setting up a periodic system with a supercell containing L atoms. Then from 
one iteration of the electronic structure calculation we obtain L pieces of information, 
namely the deviations from self-consistency on each site. For example these could be 
the Hellmann-Feynman forces which tell us how to adjust the displacements of each 
atom to move the whole configuration towards self-consistency. This is vastly more 
efficient than working only with the energy and doing L separate calculations on different 
configurations to obtain the same information. Thus the use of the self-consistency 
condition is essential, and with it a formulation of the total energy whose minimum is 
truly identical computationally with the self-consistency condition. 

A discrepancy between U,,,,, and U,, can arise from a number of reasons. Here we 
will be particularly concerned with the problem of using Gaussian quadrature to calculate 
integrals over the local densities of states obtained from the recursion method. The 
problem reduces to calculating the integrals involved in the total energy expression and 
those involved in the self-consistency condition using algorithms which ensure that the 
errors in all the computed quantities are correlated. We describe below how the standard 
procedure for the calculation of the total energy fails to preserve the analytic relation 
between self-consistency and energy minimisation and how this problem can be avoided 
by recasting the total energy expression so that it becomes a function of a single integrated 
quantity. In this way no discrepancy can arise. 

The problem and its solution are best explained using an example. We consider a 
very simple model for a ferromagnetic system so that the crucial issue which we want to 
address is not obscured by the description of the details and approximations used in a 
realistic Hamiltonian. Define n,(E) as the local density of states (DOS) for electrons of 
spin (T and split the up and down bands by an amount A so that 

(l.1a) 
(1.1b) 

The system is filled up to the Fermi energy E, so that the total number of electrons is 
given by 

EF 

n ( E )  = n(E + A/2) 
n J ( E )  = n(E - A/2). 

N = N ?  ( E F )  + N ,  (EF) = 1 ( n ?  ( E )  + n i  ( E ) )  d ~ .  (1.2) 

m = N ,  (EF) - ( E F )  (1.3) 

--oc 

Splitting the bands results in the formation of a magnetic moment 

which is related to A by the self-consistency condition 
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A = Im.  (1.4) 
For a given value of I ,  the Stoner exchange interaction, the self-consistency condition 
yields the ferromagnetic ground state whose total energy is given by 

U = U b a n d  + tZm2 (1.5) 
where 

As we shall show in more detail in § 2 (see figure l), evaluating &and using equation (1.6) 
within the quadrature approach results in a discrepancy between the actual minimum of 
the total energy curve, Umin, and the energy of the self-consistent solution, U,,, specified 
by equation (1.4). 

This problem can be avoided by integrating &and by parts which results in 

In this way both the total energy and the self-consistency condition are expressed 
completely in terms of the same quantities, N,(E). Let us for the moment regard N,,(E) 
not as the true integrated DOS but as some computationally defined quantity including 
arbitrary errors. It is easy to show by differentiating (1.5) with (1.7) that the energy 
minimum corresponds exactly to the self-consistency condition (1.4), irrespective of 
how large the errors in N,(E) may be. In this way the numerical formulation preserves 
the analytic relation between total energy and self-consistency to arbitrary precision and 
does not rely on the convergence of the integrated DOS at all. We conclude that any 
discrepancies between the energy minimum and the self-consistency condition can be 
avoided by computing all the quantities involved by analytically related algorithms. 
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The simple case we have sketched above and the detailed numerical results on 
which we report below, all concern ferromagnetic systems. However our results and 
conclusions have a more general relevance. The evaluation of the band energy is the 
central component of most calculations carried out with the recursion method. For 
example it is crucial in the determination of the relative stability of different crystal 
structures (see Kelly 1980, p 363). It is also involved in the calculation of phonon spectra 
(Finnis et a1 1987) and in defect relaxations where preserving the analytic relations 
between the total energy of a configuration and the forces on the atoms is important. 
This problem is very similar to the one we are discussing. 

Analogous difficulties can also be found in other contexts arising from different 
reasons. For example when considering the equilibrium configuration of a set of 
atoms j ,  the minimum of the total energy corresponds to the 'self-consistency' condition 
F, = 0 where F, is any residual Hellmann-Feynman force experienced by atom j .  In 
certain types of calculation the total energy is evaluated from the electronic structure 
expressed in terms of localised orbitals on the atoms, so that one moves the orbitals with 
the atoms during the relaxation. In such cases one has to employ approximate formulae 
for the Hellmann-Feynman forces which correspond precisely to a differentiation of the 
total energy expressed in terms of those orbitals (Sutton eta1 1988). We have nothing to 
add to the discussion of this well-known problem, but merely point out that our difficulty 
is of a similar nature. 

Having outlined the nature of our problem and its solution, we now turn to a more 
detailed consideration. We shall discuss what causes the problems with equation (1.6) 
within the quadrature approach and how these can be solved by using equation (1.7) or 
by the alternative approach based on terminators. We then describe the best numerical 
implementation of the new method and examine its absolute accuracy by comparing its 
results with an exactly soluble model. Lastly, in § 3, we briefly illustrate the extent to 
which this problem can affect a real electronic structure calculation using as an example 
the energies of longitudinal fluctuations in iron. 

2. Numerical results and their interpretation 

The recursion method has enjoyed popularity in tackling a wide range of problems from 
the determination of the relative stability of transition metal alloy structures to the 
relating of the electronic and topological structure in amorphous semiconductors. Its 
ability in dealing with systems of low symmetry lacking periodicity is its chief attraction. 
This is achieved by focusing on the local DOS, no(E), projected on a starting state iuo). 
This is related to the Green function G,(E) corresponding to luo) at an energy E which 
can be expressed as a continued fraction: 

n o w  = -(W Im(Go<E)> (2.la) 

no(,!?) = -(l/n) Im[l/(E - a. - b l / [ E  - a l  - b:/(E - a2 - . . .)I}]. 
The recursion coefficients a, and b, are given by 

(2.lb) 

Hlu,) = a,lu,) + b n + l l U n + l )  + bnl%-J (2.2) 

for the Hamiltonian H .  Recursion calculations are almost invariably based on a tight- 
binding Hamiltonian and are usually carried out in two stages. First the coefficients are 
obtained by using the recursion relation (2.2) and for real systems only a relatively small 
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number of them can be calculated. The coefficients are then used to obtain the DOS and 
other derived quantities, most notably the integrated DOS. 

The problem of the analysis of the coefficients has aroused considerable interest 
since the early days of the method as the two competing philosophies of Gaussian 
quadrature (Nex 1978,1984) and analytic termination (Haydock et aZl972, Turchi et al 
1982, Beer and Pettifor 1985, Luchini and Nex 1987) have emerged. Gaussian quadrature 
arose out of Nex’s investigation of the bounds on the DOS (Nex 1978). He found that the 
integrated Dos has continuous upper and lower pointwise bounds which can be calculated 
from the recursion coefficients. The difference between the bounds narrows with increas- 
ing number of levels included in the quadrature. A differentiation of these bounds yields 
estimates for the DOS which, though not bounded themselves, are usually very reliable. 
On the other hand termination basically involves substituting a simple analytic 
expression for the part of the continued fraction which was not computed (the ellipsis 
of equation (2.1b)). This rather crude procedure is adequate for the simpler cases but 
gives large spurious oscillations in the DOS for even slight mismatches between the 
essential singularities of the computed coefficients and of the terminator. In this paper 
we are mostly interested in quadrature and refer the interested reader to Haydock and 
Nex (1984 and 1985) for a critical comparison of the two approaches. 

Before discussing our numerical results we specify the mathematical formulation of 
our model in greater detail. To examine the total energy curve we need to compute the 
energy of a configuration away from the self-consistency condition. The energy of such 
a non-equilibrium configuration is given by 

U = Uband + arm2 + h - m  

h = &(A - Zm). 

(2.3) 

(2.4) 

where the magnetic field h is related to the exchange splitting A by 

Luchini et a1 (1990) discussed this in the framework of a Landau formulation where the 
deviation from equilibrium is represented by the field h. For the self-consistent moment 
(equation 1.4) this vanishes and the total energy is just the ground state energy (1.5). 
This field plays the rble of the force in an elastic system where the analogue of the 
magnetic moment is the displacement. 

Since the problem we are examining does not depend on the details of the Hamil- 
tonian, for simplicity we first consider the case where all the recursion coefficients are 
constant. Thus our magnetic system consists of two semi-elliptical densities of states 
corresponding to the up and down electrons, whose centres are separated by an 
amount A .  The full magnetic phase diagram of this sytem was discussed by Heine et aZ 
(1981). 

Within the quadrature approach the integrated DOS is approximated by 

where a is a constant, usually 0.5, the E, are the poles of the continued fraction extended 
so that the last pole exactly coincides with E, and the wi are the Gaussian quadrature 
weights (Nex 1978,1984). Conventionally the band energy (1.6) is computed using 

Figure 1 shows the plots of the total energy and the field as a function of magnetic 
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moment. The energy is computed using (2.3) with the conventional evaluation of the 
band energy given by (2.6). It is quite clear that the energy minimum does not correspond 
to the self-consistent solution which has zero magnetic field. Figure 1 was obtained using 
10 levels of the continued fraction. Since the recursion coefficients are constants it is 
very simple and inexpensive to check that the effect decreases only very slowly with 
number of levels. It is not an artifact of the truncation though of course it would disappear 
if we could completely resolve all the eigenvalues of the system. This would never be 
achieved in a real calculation. 

As we mentioned earlier the problem lies in the evaluation of the band energy. The 
correct procedure is to integrate the band energy by parts as in (1.7). In this way one is 
only using the integrated DOS coming from Gaussian quadrature in all the terms of the 
total energy. Explicitly 

In other words the total energy is now only a functional of the integrated DOS. Through 
the moment this same quantity is also involved in the definition of the self-consistency 
condition so that no inconsistency can arise. While the form of the band energy in 
equation (1.6) contains the analytic relation between the energy and A = Zm, the form 
in equation (1.7) explicitly preserves it to arbitrary numerical accuracy. The analytic 
relation is automatically contained in the numerical prescription and does not depend 
on the asymptotic convergence of the continued fraction coefficients. 

There are other ways of looking at the prescription in equation (2.7). The simplest 
statement is probably to note that though Gaussian quadrature itself is a differentiable 
approximation, it does not claim to preserve relations between quantities analytically 
related by differentiation. Since the relation between the total energy and the field or 
force involves a derivative one should use some caution. Doing the integration by parts 
analytically in equation (2.7) automatically takes this into account. 

Equation (2.7) also reminds us of the fact that the success of cluster calculations 
depends on the cancellation of large errors. For example it is well-known that the typical 
cluster sizes and numbers of levels used in real calculations lead to systematic errors 
much larger than the energy differences one is trying to compute. It is the correlation of 
errors in quantities calculated with a known setup that allows one to have an adequate 
energy resolution. The prescription in equation (2.7) extends this philosophy from the 
calculation to the processing of the recursion coefficients. 

This viewpoint is useful when considering the issue of the alternative approach based 
on terminators. A terminator imposes the same set of errors on all continued fractions. 
So as long as one does not use a different terminator for different quantities there is no 

I problem with preserving the analytic relation between them. Indeed terminators have 
been used successfully in phonon calculations (Finnis et a1 1984) and defect relaxations 
(Ohta et a1 1987, Paxton and Sutton 1988) where it is more important for the analytic 
relation between forces and energies to be preserved than for the DOS to be accurate. 

Before discussing a computation with a real Hamiltonian we wish to examine the 
more numerical details of the implementation. In particular the evaluation of the integral 
of the integrated DOS in equation (2.7) is crucial and deserves some thought. Since 
Gaussian quadrature yields a pointwise continuous approximant to the integrated DOS 
it is tempting just to feed this to an integrating routine. Indeed this is sufficient for 
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Figure 2. Total energies obtained from the con- 
ventional quadrature procedure (upper curve), 
the new quadrature procedure (lower curve) and 
the exact solution (middle curve). The quad- 
rature self-consistent moment, indicated by the 
big circles, is different from the exact one. 10 
levels were used in the quadrature and one can 
see that though the moment has not yet con- 
verged to its asymptotic value it does coincide 
with the minimum of the energy evaluated with 
the new procedure. 

the simpler cases but rapidly becomes problematic for densities of states with many 
singularities or if accurate quantitative answers are required. Modern recursion cal- 
culations tend to use large numbers of levels leading to eigenvalues resolved to machine 
precision near the band edges so that the integrated DOS in that region looks like a series 
of step functions. Most standard integrating routines find these difficult to deal with. 

In fact there is a more satisfactory approach which at the same time affords the ‘best’ 
way of computing the integral. Since we know that the quadrature integrated DOS must 
be smooth between the eigenvalues of the truncated continued fraction these can be 
found first, The integration can then be split up into segments delimited by them so that 
all the numerical integrals are taken over intervals where the integrated DOS is smooth 
and slowly varying. These can be tackled easily by a standard integrating routine to the 
desired accuracy. Moreover this approach is pleasing because it makes maximum use of 
all the information in the continued fraction. 

This discussion raises the intriguing question of the absolute accuracy of the new 
method. In practice we have no way of estimating it but we can use the exactly soluble 
case of the two split semi-elliptical densities of states to give us a feeling for the orders 
of magnitude involved. Figure 2 shows the exact total energy together with the results 
from the usual evaluation of the band energy (equation (2.6)) and from the new method 
(equation ( 2 . 7 ) ) .  It can be seen that the new method is better than the conventional 
prescription in terms of absolute accuracy though the effect is not very large. By itself it 
does not warrant the use of the new procedure which is much more expensive in computer 
time. Thus if we only require the estimate of the total energy of aparticular configuration 
the conventional method is adequate. This really is what we expect since the greatest 
error is in the truncation of the continued fraction and this is the same for both the old 
and the new procedures. The increase in absolute accuracy comes from the fact that we 
have a greater correlation between the errors and so greater cancellations. 

We note that over the wide scale of figure 2 the curve obtained from the conventional 
method, as well as not positioning the minimum correctly, picks up a substantial amount 
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of spurious structure leading to inaccuracies if energy differences between different 
configurations are sought. By contrast the results from the new procedure have precisely 
the same shape as the exact curve. Hence as well as preserving the identity of the self- 
consistent moment and the energy minimum, energy differences are also extremely 
reliable. 

3. Results for a realistic Hamiltonian and conclusions 

Finally we turn to a brief exposition of how badly the problem we have been discussing 
can affect a real electronic structure calculation. We study the itinerant electron 
magnetism of iron and use essentially the same physical picture and You and Heine 
(1982). Our model amounts to taking a non-magnetic band structure and imposing an 
exchange splitting A, on each site j .  We then solve for the electronic structure using 
the recursion method and calculate the local moments m, and energies U, projected 
on each site. By varying the magnitudes and directions of the exchange splitting a wide 
variety of configurations can be examined. This model has recently been elaborated and 
improved by Luchini and Heine (1989) who fully included the s and p electrons in the 
context of spiralling arrangements of spins. The much larger bandwidth of this model 
compared to previous d-band-only calculations forces one to use a correspondingly 
larger numbers of levels (=90) to obtain the same energy resolution and thus the full 
accuracy of the ‘best’ method for performing the integration of the integrated DOS 
described above is required. 

Here we simply want to examine the local energies for a longitudinal magnetisation 
fluctuation around the ferromagnetic ground state. Hence we consider a sinusoidal 
variation in magnetic moment superimposed on a ferromagnetic background and 
adjust all the A, at atomic positions Z, until 

m, = mFM + 6m sin(q * l , )  (3.1) 
for a magnetisation wave of wavelength il = 2n/q with amplitude 6m as shown in 
figure 3(a). Clearly the issue of the position of the energy minimum is crucial to this 
problem since we are perturbing around it. 

Figure 3 shows the local energies for a long wavelength and small amplitude 
magnetisation wave evaluated with the conventional and with the new procedure. It 
is quite clear that the energy changes obtained with the conventional procedure are 
completely dominated by the lack of coincidence between the energy minimum and 
the self-consistent moment as shown in figure 1. A small caueat has to be made. 
Strictly speaking the value of the local energy i.e., the contribution of a particular site 
to the total energy, is physically meaningless. However in the long wavelength limit 
it must tend to its value for a uniform magnetisation. Hence in the spirit of the local 
environment approach (Heine 1980) in which these calculations are carried out we 
feel justified in interpreting figure 3 as follows. 

To first order, since we are perturbing around the total energy minimum we would 
expect to see the local energy follow a ‘sin2’ profile. In the region of the wave where 
the moment is closest to the ferromagnetic value we would expect to observe the 
effects of the gradient term in the local energy and therefore the largest deviation 
from the sin2 form. These considerations are borne out quite accurately by the energies 
calculated by the procedure of equation (2.7). However the plot computed using 
equation (2.6) shows quite clearly that the energies correspond to a perturbation 
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Figure 3. Longitudinal fluctuations around the 
ferromagnetic ground state for the spd model of 
iron. A fluctuation with amplitude 0.07 ,uB and a 
wavelength of 20 sites is shown here. ( a )  Moment 
in ,U, along the magnetisation wave. ( b )  Local 
energy in yRyd along the wave evaluated using 
the conventional quadrature procedure relative 
to the energy of the ferromagnetic ground state. 
( c )  Local energy in uRyd along the wave evalu- 
ated using the new quadrature procedure relative 
to the energy of the ferromagnetic ground state. 

around a moment smaller than the effective energy minimum resolved by the 
procedure. That is they are consistent with figure 1. Clearly the total configuration 
energies which are the object of the calculation are very different in the two cases. 
Full details are given in Luchini et a1 (1990) where the spectrum of longitudinal 
fluctuations is calculated. 

As a conclusion we simply want to focus the attention again on the general lesson 
which can be learnt from our investigation. This goes beyond the specific problems 
associated with Gaussian quadrature in the recursion method though we have seen 
how our discussion is in line with previous developments and puts various bits of 
recursion lore in a coherent picture. When one requires analytic relations between 
various computed quantities it is not sufficient for them to be accurate to the same 
number of significant figures. It is crucial that the numerical procedure used explicitly 
preserve the analytic relation at every step to arbitrary precision. 
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